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Abstract 

A nonlocal interaction theory is formulated for photoproduction processes by introducing 
a form function. An effective nonlocal, Lorentz invariant and gauge invariant Lagrangian 
density for the four-field interaction that gives rise to a production amplitude is con- 
structed. The general structure of the form function is investigated by using some re- 
strictions of the form function. For low energy ~r ~ photoproduction an explicit form of the 
Fourier component of the form function is obtained. The physical model of the present 
formalism is to assume, similar to the strong absorption model, that the system in 
intermediate states is confined in a finite domain of space. For ~r ~ production the linear 
dimension of this domain is obtained to be g20 = 3'88F. It is important to observe that the 
extent of electromagnetic distribution in a nucleon is also nearly the size of ~0. This is 
believed to be the reason that in low energy pion photoproduction the effects of electro- 
magnetic structure of a nucleon are irrelevant. The unpolarized differential and total 
cross sections are calculated for ~r ~ production in helicity representation and the 
predictions are found to be in good agreement with experiments. 

1. Introduction 

The theoret ical  analysis  o f  the p h o t o p r o d u c t i o n  o f  mesons has been 
s tudied by  many  authors .  A review of  these deve lopments  will not  be given 
here. W e  refer the  reader  to  Donnach ie  and Shaw's  pape r  (Donnach ie  & 
Shaw, 1966) for  a systematic  review o f  the deve lopments  within the f rame-  
works  o f  d ispers ion re la t ion  and  i sobar-exchange  model .  

In  this pape r  we present  an  analysis  o f  single p ion  p h o t o p r o d u c t i o n  based 
on  a nonloca l  in terac t ion  theory.  In  this formal ism,  as shown in Section 2, 
a non loca l  in terac t ion  fo rm funct ion  is in t roduced  into the t rans i t ion  
matr ix .  App ly ing  the Loren tz  invar iance,  as shown in the Append ix ,  some 
restr ic t ions o f  the fo rm funct ion are obta ined.  The general  fo rm o f  s tructure 
o f  the Four i e r  componen t s  o f  the fo rm funct ion  are invest igated by using 
these restr ict ions.  The Four i e r  componen t s  o f  the  fo rm funct ion represent  
the  energy cor re la t ion  funct ions  between fields in in te rmedia te  states. 

The  physical  mode l  o f  this fo rma l i sm is to assume tha t  the system in 
in te rmedia te  states is confined in a finite d o m a i n  o f  space s In  concept ,  
the present  mode l  is in this respect  s imilar  to  the s t rong absorp t ion  mode l  
( F r a h n  & Venter,  1963) in which one assumes the existence o f  an absorb ing  
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56 L . H .  TANG 

sphere and actually paramatizes the size of the absorbing sphere in calcu- 
lations (Eisenberg et al., 1966). The linear dimension of this domain in 
present calculation is taken to be the wave length corresponding to the mean 
energy of intermediate states. With this model the explicit forms of the 
Fourier components of the form function can be obtained for low energy rr ~ 
photoproduction as shown in Section 3. The unpolarized differential and 
total cross sections for ~r ~ production are calculated in helicity representation 
and the comparisons with experimental data are given. 

2. Formalism 
The S-matrix for photoproduction is written as usual 

Sf, = 3 e, + i(2zr) 4 3(P, - P~.) Ty, (2.1) 

where Tis the transition matrix, and P~ = k + p~, Ps = q + P2. The quantities 
k, q, pl andp2 are four-momenta of the incident photon, the outgoing meson, 
the initial nucleon, and the final nucleon respectively. For scalar meson 
photoproduction, the transition matrix is expressed in the present formalism 
a s  

T=--ieg"N2 f ~" ~ M(x,x',x",x")~(x).[:(x'),rys_ _ Qu~b(x")] 

• .4#(X 'It) d 4 x d  4 x '  d 4 x" d 4 x "1 (2.2) 

In equation (2.2) the ~ indicates the sum over all permutations between 
P 

x, x', x", x'. The four-vector operator Qu is a function of y-matrix. Its 
structure depends on the photon energy. For photon energy of less than 0.5 
Gev Q, is assumed to have a very simple form, namely Q, = yu. However, 
when photon energy is greater than 0.5 Gev, the effects of the detailed 
electromagnetic structures of nucleon on photoproduction process are 
befieved to become important. Then the operator Qu should contain the 
information of nucleonic electromagnetic structure and should be written 
as (Drell & Zachariasen, 1961) 

Q~'" = F~'"((pl -pz)Z)yu + iF~'"((px -pz)  z) ~uv(Pl -Pz) ,  (2.3) 

The function M(x,x',x",x") is an interaction form function between 
fields. It describes the non-local interaction between fields in photo- 
production processes. Generally, this function is taken to be a function of 
coordinates of the interacting fields. A general expression for this function 
is still unknown. However, if we assume that the Lorentz invariance holds 
within the domain of f20 (Rrdei, 1967), we can obtain some restrictions of 
the form function. As shown in the Appendix, if it is required that the 
energy-momentum is conserved under the translational transformation of 
space-time, one obtains a restriction 
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On the other hand, if we require that angular momentum is conserved 
under rotational transformation of  space-time and for non-local interaction 
an integral symmetry of the energy-momentum tensor is satisfied, then one 
obtains another restriction 

i=l \ v Oxi-Xfl M(x', .... x")=0 (2.5) 

Some interesting consequences of  these restrictions, particularly restric- 
tion (2.4) which is generally true, on the form function is best seen by 
considering the Fourier transformation of the form function 

(21)4, f M ( k ' , . . . , k " ) e x p t i ( k  u' x~,' + . . . +  kt,'xu")] • M (x', . . ., x") 

• d 4 k ' . . ,  d4k" (2.6) 

Substituting equation (2.6) into equation (2.4), one obtains in Fourier 
space 

kt;  m ( k ' ,  . . . .  k") = 0 (2.7) 
i 

r n - I  Equation (2.7) implies that ku" can be solved as a function of ku .. . .  ,kv . 
Furthermore, if one recalls that x3(x) = 0 the Fourier components can be 
expressed in the following form 

M ( k ' , . . . ,  k") = (2rr) 4 M ( k ' , . . . ,  k"-~) 3(k S + ' "  + ku" ) (2.8) 

and equation (2.6) becomes 

1 f M(k', k "-~) M(x ' ,  . . . .  x") (27r)4n_ 4 . . . ,  

( n - l )  

x I - I  exp [ i k J ( x j  - xu" ) d 4 k ' , . . . ,  d 4 k "-1 (2.9) 
j = l  

Now if we let 
M(k ' ,  . . . .  k "-l) = 1 (2.10) 

equation (2.9) immediately reduces to 

( n - l )  

M ( x ' , . . . ,  x") = I - - I  8(xui - xu") (2.11) 
i~ l  

which is the local limit, i.e., by substituting equation (2.11) into equation 
(2.2) one obtains the conventional local interaction field theory. The 
implications of equations (2.8) and (2.10) on the general form of structure of 
the Fourier components of  the form function are very essential. In the next 
section, a detailed structure of  the form function will be developed for 
process of  neutral pion photoproduction. 
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Let us now consider an observable, namely the differential photopro- 
duction cross section. In helicity representation (Jacob & Wick, 1959), the 
unpolarized differential pion production cross section in the c.m. system 
can be written as 

- 6(87r)2 \ p  S] ~ l/a'a";a'a~(o'~)lZ (2.12) 

where the helicity amplitude can be expressed in partial wave expansion 

f, haa;a~a~(O, r = ~ (J + �89 (JM; )t 2 )tal T'J)[ JM; ~1 )tk) 
J 

• exp [iQ, -/~)4~1 d],(O) (2.13) 

In equation (2.12) the indices hi, hE, Ak and ~ stand for the helicities of the 
initial nucleon, the final nucleon, the incoming photon and the produced 
meson respectively. All other quantities are well defined in other places 
(Jackson & Hite, 1967). The matrix T (a) is a submatrix of the transition 
matrix T belonging to definite values of J. The matrix elements are taken 
between the asymptotic helicity states of the incoming photon and nucleon 
and the asymptotic outgoing meson and nucleon states. In the present 
formalism, one introduces an intermediate orthonormal complete set of 
state vectors {Is)} describing the coupling states of interacting fields, and 
the submatrix element in equation (2.13) can be expanded 

(JM; A2 h~[ T(a)IJM; AI hk) =,,~,t3 (JM; A2 A~I o~) 

• <~lZ<'~lS> (fllJM;hl Ak) (2.14) 

For low-energy photopion productions, we assume that the set {[~)) can 
be represented by angular momentum representations {[JM;LS)} with 
channel spin S and relative orbital angular momentum L in Russell- 
Saunder's coupling. With this representation and the transformation matrix 
(Jacob & Wick, 1959) 

LS" [2L + 1~ I/z (JM;A'AJIJM; )=[~---+1) (Jt~[LO;SI~)(SI~]SJ-AJ;&-A') 

(2.15) 
expression (2.14) can be rewritten as 

(JM; ~2)~q[T~S~[JM; AI ~k) =LS~L,S, [(2L + I)(2L' + I)] + 1) 

x (JAILO; Sh) (Sh[& - 3k; 81 ~1~ 

• <JIzIL' O; S'tx> <S'/zlS q - Aq; $2A2> 

• (JM; L' S' [ T(s) IJM; LS) 
(2.16) 
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where the quantities (JM]jlml;j2m2) are the usual Clebsch-Gordon 
coefficients. The problem is now reduced to the calculations of the sub- 
matrix elements (JM;L' S' [T (s) [JM;LS). As an example, the calculations 
will be performed for the case of neutral pion production in the next section. 

3. Neutral Pion Photoproduetion 

In photoproduction processes, when photon energy is below 0.5 Gev the 
contribution from multipion production is negligible. However, if the pho- 
ton energy is above 0.5 Gev, processes involving more than one neutral 
product can become important (Cambridge Bubble Chamber Group, 1966). 
In order to avoid these difficulties, we will here consider the single neutral 
pion production for E~ < 0.5 Gev, i.e. in the region of first resonance. In this 
process, there is no charge exchange and the proton is not excited. Thus, in 
the present model, one assumes that the essential functions of the proton in 
process are two-fold, namely to conserve the monenta and to provide the 
domain g-20. Furthermore, for low energy production as discussed in the 
previous section, the effects of the detailed electromagnetic structure of 
nucleon on the process are negligible. One can then make the following 
simplifications for the form function and the operator Qu 

M(x, x', x", x') = M(x, x") 8(x' - x") (3.1 a) 
and 

O. = y .  (3. lb) 

and the transition matrix of equation (2.2) can be simplified as 

r = (-ieg N) M(x ,  x") 
P 

• )'5 Y# ~(+)(X') AI~(X" ) d 4 x d 4 x '  d 4 x"  (3.2) 

The field operators ~(-)(x) and Au(x" ) are respectively the ~r ~ creation 
operator and the photon 4-potential operator which annihilates the 
incoming photon. In the present formalism, these operators are expanded 
in terms of spherical waves describing states of definite angular momentum. 
For ~(-)(x) one has (Muirhead, 1965) 

~- ' (x)  = (1) ' /2 ql~, " (~l/2*(qr)Y?*(,)~Tt(q)exp(i~t) (3.3) 

where the operator ~'*(q) creates a zr ~ with quantum numbers I and rn for 
angular momentum and q for the linear momentum, and the function 
j~(qr) are the conventional spherical Bessel functions. The quantity R is the 
radius of a three-dimensional sphere such that the Bessel functions are 
normalized according to 

R 

! jl(qr)jl(q' r) r2 dr = ~--~ 3a,o (3.4) 
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For the 4-potential, one has 

Au(x)= • Co~sM(Ao, s~t)l~ (3.5) 
co, j ,  M 

where the operator Co,.M annihilates a photon of energy co, angular 
momentumj and its z-component M. The spherical wave (Ao~sM)u describes 
photon state of definite angular momentum, energy and parity. The explicit 
form of (Ao, sM)u depends on the induced transition being due to electric 
2L-pole or magnetic 2L-pole. For magnetic multipole transitions, which will 
be interesting in our case, (Ao~s~)u can be written (Akhiezer & Berestetski, 
1965) 

i / 2  

A o z M = I (  k] gs(kr)YS~(~)exp(icot) (3.6a) 
- -  ,~Tr \ i x ~  

and 

(Ao~m)o = 0 (3.6b) 

The function Y~(P) is the vector spherical harmonic and can be expressed as 

1 y(o)r~a _ (3.7) JM" " [j(j+ I)],nLysM(f) 

In equation (3.7), L is the relative orbital angular momentum with respect 
to the nucleon. The function &(kr) is again a normalized spherical Bessel 
function in a three-dimensional sphere of radius R. Since the proton is not 
excited, it is adequate to use the ordinary plane wave expansion for the 
proton field. Then, by combining equations (3.2), (3.3) and (3.6a) and by a 
lengthy but straightforward calculation, the submatrix element in equation 
(2.16) can be written as 

(JM;L' S' IT (J) ]JM;LS) 

(eg~N) (27r)3.~[(k,. ~ mkan. 
8V(151 ---,'- , E 

m2 

(JMILo M,; �89 (JMIL,, M,,; Smk + rnl) 

x (Smk + mlJlmk; �89 [T,,:(O) + TriO)] (3.8) 

The functions T,,:(O) and T:(O) are nucleon spin non-flip and spin flip 
terms respectively and have the following expressions 

Ipl][p2]cosO ],, 
T,:(O) = [1 - (El + M)(E2 + M)J ore2, m, (3.9) 

where 0 is the angle between incoming photon wave vector k and the out- 
going pion momentum in e.m. system. The indices ml and m2 are spin 

[Pl liP21 sin 0 (i~) 3mz, - m2 (3.10) T:(O) (El + M) (Ez + M) exp 
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indices for nucleon before and after pion production. The function Jt'(k*) 
is written as 

dq (3.11) dZ(k*) = f M(q, k*) (q2 _ rn 2),/2 

where k* is the photon wave vector in c.m. system and M(q,k*) is the 
Fourier component of the form function M(x, x"). It represents the energy 
correlation function between the photon and the neutral pion fields in 
intermediate states. According to equation (2.8), the function M(q, k*) can 
be written as 

M(q, k*) = 2zrA(q) 3(q - k*) (3.12) 

where A(q) describes approximately, in this calculation we exclude the 
proton energy, the energy amplitude in intermediate states and is an 
explicit function of the outgoing pion wave vector q. An intermediate state 
in this case is certainly not a stationary state of definite energy. Quantum 
mechanically, one can easily show that the energy amplitude function 
A(q) for a decaying state of finite life time can be expressed as 

i 1 
A(q) = 2rr ihA 

q ' q o  + - ~  
(3.13) 

where 2, stands for the decay constant of the intermediate state and hA is the 
width of the decaying intermediate states. The quantity q0 is interpreted 
as the mean energy of the intermediate states with a spread of  hA. In the 
present model, the whole system in intermediate states is assumed to be 
confined in a domain ~2 0. Thus the width of the decaying intermediate states 
can be written as 

h 2 
/ ~ =  h,~ m~r ff2o 2 (3.14) 

Using equations (3.8) to (3.12), the submatrix element 

(JM; L' S'I T (x) [JM; LS) 

and hence the differential cross sections can be calculated. 
Thus the entire theory has only two constants, namely q0 and Q0. In 

order to determine the quantity q0, we note the phenomenon (K~illen, 1964) 
that the experimentally observed large maxima appearing in total cross 
sections for pion-nucleon scattering and photopion production processes 
are probably caused by the same intermediate resonant state. In pion- 
nucleon scattering the maximum in total cross section occurs at pion 
laboratory energy of 0.185 Gev. Thus, in the present calculations we shall 
assume that the quantity qo equals the total laboratory energy of pion at 
maximum scattering cross section, which is q0 = 0.32 Gev. The domain ~0 
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is taken to be the wave length corresponding to q0 which is 3.88F, where F 
stands for the unit of  length in Fermis. 

The photoproduction cross-sections for 7r ~ are calculated for magnetic 
dipole transition 1,1~Ar<3)1 +, and the differential cross-section when normalized 
at 0 = 90 ~ can be written as 

d~(E~,,  O) _ {[2 + 36F2(0)] + [3 - 23F2(0)] sin 2 0}/(5 + 13f 2) (3.15) 
d ~  

d 

25 

20 

15 

I0 

I I I I i 

_/ 

1 i I l I 

0 30 60 90 120 150 180 

(0~) .... 

Figure 3.--Center-of-mass angular distributions for ~o photoproduction at E~ = 0-295 
Gev. Solid curve is the present theory. References: ~ (Berkelman & Waggoner, 1960); 

T (Highland & DeWire, 1963). 
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where 

and 

f s in  0 
F(O) 1 - f s i n  0 

f =  [~ll - -  Xl)(" 1 - -  X2) ]  ' / z  
u xo (1 u x~)j 

II1 = [I + E~/0.469]~/2/(1 + Ee/0.938) 

X2 = [1 + E~/0.469]~/2/(0.9896 + E~/0.938) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

30 J I I I l 

25 

20 

15 

10 

0 I I I I I 
0 30 60 90 120 150 180 

0 o ( ~ )  . . . .  

Figure 4.--Center-of-mass angular distributions for ~r ~ photoproduction at E~ = 0.300 
Gev. Solid curve is the present theory. References: ~ (Walker et al., 1955). 

5 
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In static limit (Chew et aL, 1957), one obtains from equation (3.15) 

da(Ev, 0) oc 2 + 3 sin 2 0 
dO (3.20) 

30 

25 

20 

15 

10 

! I I I 

E~ = .320:Gev 

i t" 

0 l I I I I 
0 30 60 90 120 150 180 

(0~r) .... 

Figure  5 . - -Cen te r -o f -mass  angula r  distr ibut ions o f  7r ~ pho toproduc t ion  at E~ = 0"320 
Gev.  Solid curve is the  present  theory.  

The prediction of equation (3.20) is also consistent with the result of isobar 
model (Gourdin & Salin, 1963). Namely, for neutral pion photoproduction 
in the region of first resonance all angular distributions are roughly 
expressed by 2 + 3sin20. Comparing with experimental ~r ~ production 
data, as shown in Figs. 1 and 2, one sees that the first resonance is essentially 
dominated by the M?+ ) transition and the agreement is seen to be good. The 
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angular distributions at photon laboratory energies of 0.295, 0"300, 0.32 
Gev are given from Fig. 3 to Fig. 5 and the agreements are quite satisfactory. 

4. Discussions and Conclusions 

On comparison with experiments in case of neutral pion photoproduction, 
the predictions of the present theory are found to be in good agreement. 
Above all, this formalism provides us with a simple model for photo- 
production processes. It further verifies the conclusion that the large 
resonances appearing in total cross sections for pion-nucleon scattering and 
photopion productions are caused by the same resonant intermediate state 
of the same total energy of the whole system. 

There are only two constants to be determined in this formalism, namely 
q0 and s Both of these constants have clear and definite physical meanings. 
The constant q0 represents the mean energy of intermediate resonant states 
of the system. As mentioned in Section 3, for low energy 7r ~ production the 
proton is not excited and there is no charge exchange, thus the essential 
functions of the proton are assumed to provide the domain s for the 
process and to conserve the momenta. Therefore, the proton energy is not 
included in the constant q0. The active parts of the system in intermediate 
states are assumed to be localized within s . In concept, the present model 
is in this respect similar to the strong absorption model. 

For neutral pion photoproduction the domain s turns out to be 3.88F. 
It is very interesting to note that the extent of electromagnetic distribution 
in a proton is also nearly the size ofs (Hofstadter & Herman, 1961). This 
is believed to be the reason, which appears so clearly in the present for- 
malism, that in low energy pion photoproduction the effects of electro- 
magnetic structure of a nucleon are irrelevant. On the other hand, in case of 
vector meson or strange particle photoproduction, the domain s is expected 
to be much smaller and the effects of electromagnetic structure of a nucleon 
on the production processes are expected to be great. 

Appendix 

We display here the derivations of some of the restricting conditions on 
the form function. Now, let us recall that under an inhomogeneous Lorentz 
transformation the 4-coordinate transforms as 

3x~ = % -  %vx~ (A1) 

and a field transforms as 

3~(x) = 3 o ~(x)  + ~h~a(x) 3xa + %v S ~  ~O(x) (A2) 

where the last two terms in (A2) are the infinitesimal transformations of the 
field induced by the transformation of (A1), while the first term in (A2) is 
due to a change in the functional form of ~(x).  The total change of action 
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functional under an inhomogeneous Lorentz transformation can be 
written as 

a2  

8A = f [OX'(x) a . . . .  3X'(x) 3 "~" " &g~'(x) 3xul d4 x (A3) Io -U~  o v. tx~ + ~ o ~..ax) + Ox, j 
171 

where cq and ez are space-like surfaces, cr 2 is later than cq. The integration 
is taken over a space-time domain bound by cq and %. For translational 
transformation only, i.e., 

E~U ~, = 0 

a # ( x )  = 0  
and 

ao # ( x )  = - ~ 5 ( x )  ~. 

ao ~5(x) = - # . . ( x )  ~. 

equation (A3) reduces immediately to 
~2 
; 

8~, A = e u -- I \ - - ~ x u  / d4 x (A4) 

ffl 

and (A4) is valid for an arbitrary field. Generally, the Lagrangian functional 
can be expressed as 

~e(x~ = ~ ,,f ~.?.f a4x'...a4x"-'~,',",(x,x ', . . . ,  x"-'; ~=(x), ~-(x '3 . . . . .  
n = l  

171 

x ~b'(x"-l); ~5(x), ~bS(x'),..., ~bS(x"-l)) (AS) 

where all integrations are taken over the same space-time domain bound by 
gl and g2, and equation (A4) is rewritten as 

3~,A = % ~  1 . . .  N \ ~ f ] d 4 x . . . d 4 e  -' (A6/ 

g l  

For translational invariance, i.e. 3,~A = 0, one obtains the necessary and 
sufficient condition 

l = !  

In case the non-interacting part of the Lagrangian functional is not an 
explicit function of x .  ~, and for a non-local interaction the Lagrangian 
density can be expressed 

X'(") = ~o(~b,(x'),..., ~b,(x")) + ~ ~ M(x',...,x")~b,(x')... ~b,(x ~) (A8) 
P 
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where ~ indicates the sum over all permutations among x', . . . ,x" and the 
P 

function M(x', .... x") is the form function for non-local interaction between 
the fields ~bl(x'), . . . ,  r Combining equations (AT) and (AS) one 
immediately obtains the restriction 

2 0-~ M(x', . . .,x") = O 
l=l 

which is equation (4) in Section 2. 
For rotational transformation of space-time only, one has 

(A9) 

and 

% = 0 

~Xtx = - - % v  Xv 

8~,-(x) = o 

80 6"(x)  = %~(67.(x)x~ - s ; ~  r  

8o r = %~(r xv + r G - s ; ~  r 

and by using the Lagrange equation, 

O~ 0 0 ~  
m = O  

the total variation of action functional can be expressed as 

n=l  t= l  
~1 crl 

{ xff/O'LPcn)x /O~c")\~ 

where we have made use of the following relations 

and 
v/~ - -  ~/av 

Evb t ~ - -E /z  v 

It can be shown that in ease of local-interaction theory the energy- 
momentum tensor Tv. itself is symmetric. Now for simplicity, we assumed 
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that  for  non-local interaction a kind of  integral symmetry o f  the energy- 
m o m e n t u m  tensor will be satisfied, i.e. 

0"2 if2 

f Z , ~ d a x =  f Z~odax ( A l l )  
Gr 1 a 1 

Then combining equations (A11) and (A10) and requiring the invariance o f  
the total act ion functional, one obtains 

~ 0  i 0 . 

Substituting equation (A8) into equation (A12), one has 

(A13) 

which is equat ion (5) in Section 2. 
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